

An evaluation of the biologic activity and vitamin D receptor binding affinity of the photoisomers of vitamin D_3 and previtamin D_3

Tai C. Chen, Kelly S. Persons, Zhiren Lu, Jeffrey S. Mathieu, and Michael F. Holick

Vitamin D, Skin and Bone Research Laboratory, Endocrine Section, Department of Medicine, Boston University Medical Center, Boston, MA USA

Skin is the site of previtamin D_3 and vitamin D_3 synthesis and their isomerization in response to ultraviolet irradiation. At present, little is known about the function of the photoisomers of previtamin D_3 and vitamin D_3 in skin cells. In this study we investigated the antiproliferative activity of the major photoisomers and their metabolites in cultured human keratinocytes by determining their influence on ³H-thymidine incorporation into DNA. Our results demonstrated that vitamin D_3 and 25-hydroxytachysterol₃ were effective in inhibiting ³*H*-thymidine incorporation at both 10^{-8} and 10^{-6} M in a dose-dependent manner. Lumisterol, tachysterol₃, 5,6-trans-vitamin D_3 , and 25-hydroxy-5,6-transvitamin D_3 only induced significant inhibition at 10^{-6} M. 25-Hydroxytachysterol₃ was approximately 10- to 100-fold more active than tachysterol₃. 7-Dehydrocholesterol was not active even at 10^{-6} M. The dissociation constants of vitamin D receptor (VDR) for 25-hydroxytachysterol₃, 25-hydroxy-5,6-trans-vitamin D_3 , and 5,6-trans-vitamin D_3 were 22, 58, and 560 nM, respectively. The dissociation constants for 7-dehydrocholesterol, tachysterol, and lumisterol were greater than 20 µM. In conclusion, vitamin D_3 , its photoisomers, and the photoisomers of previtamin D_3 have antiproliferative activity in cultured human keratinocytes. However, the antiproliferative activity did not correlate with their binding affinity for VDR. The results suggest that some of the photoproducts may be metabolized to their 25-hydroxylated and 1α ,25-dihydroxylated counterparts before acting on VDR. Alternatively, a different receptor may recognize these photoproducts or another mechanism may be involved in modulating the antiproliferative activity of the photoisomers examined. (J. Nutr. Biochem. 11:267-272, 2000) © Elsevier Science Inc. 2000. All rights reserved.

Keywords: skin; keratinocytes; thymidine incorporation; antiproliferation

Introduction

Vitamin D is absolutely essential for the maintenance of calcium homeostasis and for the development and maintenance of healthy bones in animals.¹ There are two major sources of vitamin D; one is diet and the other is the cutaneous synthesis. However, because vitamin D is rare in foods, it is casual exposure to sunlight that is responsible for

providing humans with most of their vitamin D requirement. During exposure to sunlight, the ultraviolet B (UVB) portion of the solar spectrum (295–315 nm) causes the photolysis of epidermal stores of 7-dehydrocholesterol (7-DHC) to previtamin D₃. Previtamin D₃ then thermoisomerizes to vitamin D₃, a process that is facilitated by the lipid-membrane environment.² After vitamin D₃ is made in the skin or ingested in the diet, it must be hydroxylated at carbon positions 25 and 1 in the liver and kidney, respectively, to form 1α ,25-dihydroxyvitamin D₃ [1α ,25 (OH)₂D₃], the active form of vitamin D₃. 1α ,25(OH)₂D₃ is responsible for promoting intestinal calcium absorption and the mobilization of calcium from bone for the purpose of

Address correspondence to Dr. Tai C. Chen, Room M-1022, Boston University Medical Center, 80 E. Concord St., Boston, MA 02118 USA. Received December 17, 1999; accepted February 11, 2000.

Figure 1 Structures of vitamin D₃ and its related compounds

maintaining a normal level of serum calcium. During the past 20 years, it has been recognized that 1α ,25(OH)₂D₃ also can influence a variety of other biologic processes through its vitamin D receptor (VDR) in tissues other than those that regulate calcium metabolism, including skin. In cultured human keratinocytes, 1α ,25(OH)₂D₃ inhibited basal cell proliferation and stimulated differentiation to form the cornified envelope.^{3–5}

During chronic exposure to sunlight, both previtamin D_3 and vitamin D_3 in the skin can be photoisomerized to a variety of photoproducts, including 5,6-trans-vitamin D_3 , tachysterol, and lumisterol.^{6,7} Because the concentrations of these photoproducts in skin cells are likely to be very high, it is possible that some of these photoproducts may have direct biologic properties on skin cells. Because tachysterol and 5,6-trans-vitamin D_3 , which are

photoproducts of previtamin D₃ and vitamin D₃, respectively, have a pseudo-1- α -hydroxyl structure due to the 180-degree rotation of the 3-hydroxyl group during isomerization (Figure 1), it is possible that these analogs may act like 1α ,25(OH)₂D in the epidermis. It has been previously reported that 5,6-trans-vitamin D₃ and tachysterol can mimic the intestinal calcium transport activity of 1α ,25(OH)₂D in an phric rats and that their 25hydroxy derivatives were more active in the same assay system.⁸ Therefore, we evaluated the potential antiproliferative activity of the major photoproducts of previtamin D₃ and vitamin D₃ by determining their effects on ³H-thymidine incorporation into cultured normal human keratinocytes and compared the antiproliferative activity with their binding to VDR using a calf thymus cytosol receptor preparation.

Methods and materials

Cell cultures

Normal human keratinocytes were obtained from neonatal foreskins as described previously.^{4,9} Keratinocytes were plated and grown on lethally irradiated 3T3 fibroblast feeder layer in a serum-free basal medium supplemented with amino acids and growth factors as previously described.¹⁰

³H-Thymidine incorporation

When the second-passage cells grown on 24-well plates reached approximately 40% confluency, they were fed with basal MCDB-153 medium supplemented with amino acids without growth factors.¹⁰ Two days later, cells were incubated with epidermal growth factor (EGF; 25 ng/mL) and with or without 1α ,25(OH)₂D₃, vitamin D₃, 7-DHC, and photoisomers of vitamin D₃ and previtamin D₃ (10⁻¹⁰, 10⁻⁸, and 10⁻⁶ M), as indicated in the figure legends. Eighteen hours later, the medium was replaced with 0.5 mL of fresh basal medium containing 1 µCi of [methyl-³H]thymidine and incubated at 37°C for 3 hr. ³H-Thymidine incorporation into DNA was stopped by placing the 24-well plates on ice; unincorporated ³H-thymidine was removed and the cells were washed three times with ice-cold phosphate-buffered saline. DNA labeled with ³H-thymidine was extracted by the perchloric acid method, as described previously.⁴

Receptor binding assay

The binding of vitamin D_3 and the photoisomers of previtamin D_3 and vitamin D_3 to VDR was performed using a nonequilibrium binding assay in which calf thymus $1\alpha,25(OH)_2D$ receptor was used.¹¹ The procedures for the determination of binding affinity for calf thymus $1\alpha,25(OH)_2D$ receptor have been described in detail elsewhere.¹² The K_d was defined as the concentration at which it caused a 50% reduction in the binding of ³H-labeled $1\alpha,25(OH)_2D_3$ to thymus receptor.

Synthesis of photoisomers

Tachysterol₃ was prepared by irradiating 7-DHC solution in methanol (50 µg/mL) in a quartz tube placed on ice at 254 nm using a monochromatic light source (Oriel Corp., Stamford, CT USA) for 9 min. The irradiated solution was dried under a stream of nitrogen gas and redissolved in 200 µL of 1.2% 2-propanol in n-hexane. The solution was then applied to a high performance liquid chromatography (HPLC; Waters Associates, Milford, MA USA) using a preparative Econosphere silica column (10 µ particle size, 250×10 mm; Alltech Associates, Deerfield, IL USA) with a mobile phase of 1.2% 2-propanol in n-hexane and a flow rate of 2 mL/min. The fraction containing tachysterol₃ was dried under a stream of nitrogen gas, redissolved in 0.1% 2-propanol in n-hexane, and applied to HPLC using SB-CN column $(250 \times 4.6 \text{ mm}; \text{MAC MOD Analytical Inc., Chaddsford, PA})$ USA) with a mobile phase of 0.1% 2-propanol in n-hexane and a flow rate of 1 mL/min. The fraction containing the purified tachysterol₃ was dried under a stream of nitrogen gas and redissolved in 100% ethanol, and its quantity was determined. The ultraviolet (UV) absorption spectrum showed λ_{max} of 279 nm. The yield was approximately 50%. 25-Hydroxytachysterol₃ [25(OH)tachysterol₃] was synthesized from 25-hydroxy-7-DHC by a procedure similar to that used for tachysterol₃. Lumisterol₃ was prepared by exposing 7-DHC solution in methanol (400 µg/mL) in a quartz tube to a UVB light box (National Biological Corp., Cleveland, OH USA) containing FS-40 fluorescent tubes with a spectral output of 280 to 450 nm for 30 min at room temperature. The exposed solution was dried under a stream of

Biologic activity of vitamin D photoisomers: Chen et al.

argon gas. The residue was redissolved in an aliquot of 0.5% 2-propanol in n-hexane and applied to HPLC using an Econosphere Sil silica column (5 μ , 250 \times 4.6 mm; Alltech Associates) with a flow rate of 1.6 mL/min. The fraction containing lumisterol₃ was dried and redissolved in 100% ethanol. The UV absorption spectrum and the concentration were determined using a Perkin-Elmer 552A spectrophotometer (Norwalk, CT USA). The yield was approximately 40%. 5,6-Trans-vitamin D₃ and 25-hydroxy-5,6-transvitamin D₃ were prepared from vitamin D₃ and 25-hydroxyvitamin D₃ [25(OH)D₃], respectively, as previously described.⁸

Materials

Crystalline 7-DHC was obtained from Salsburg Laboratories Inc. (Charies City, IA USA) and vitamin D_3 was purchased from Sigma Chemical Co. (St. Louis, MO USA). 25-Hydroxy-7-DHC and 1α ,25(OH)₂ D_3 were gifts from Dr. R. Gray of Amoco BioProducts Corporation (Naperville, IL USA) and Dr. M. Uskokovic of Hoffmann-La Roche Inc. (Nutley, NJ USA), respectively. Tissue culture media, insulin, hydrocortisone, and prostaglandin E_1 were obtained from Sigma Chemical Co. Human recombinant EGF was purchased from PeproTech (Rock Hill, NJ USA). ³H-Thymidine (specific activity, 72.5 Ci/mmol) was purchased from New England Nuclear (Boston, MA USA). ³H-1 α ,25(OH)₂ D_3 [1 α ,25-dihydroxy(26,27-methyl-³H)cholecalciferol] with a specific activity of 180 Ci/mmol (TRK 656) was obtained from Amersham (Arlington Heights, IL USA).

Statistics

Results are reported as mean \pm SEM, and the unpaired Student's *t*-test was used to calculate *P*-values.

Results

Figure 2 demonstrates that 1α ,25(OH)₂D₃ was highly effective in inhibiting ³H-thymidine incorporation in a dose-dependent manner as reported previously.¹⁰ At concentrations of 10^{-10} , 10^{-8} , and 10^{-6} M, 1α ,25(OH)₂D₃ caused a 48 \pm 2, 65 \pm 3, and 85 \pm 1% inhibition, respectively, in ³H-thymidine incorporation compared with the control. Lumisterol₃, tachysterol₃, 5,6-trans-vitamin D₃, and 25(OH)5,6-trans-vitamin D_3 at either 10^{-10} or 10^{-8} M did not cause any significant inhibition in ³H-thymidine incorporation. Only at 10⁻⁶ M did lumisterol₃, tachysterol₃, 5,6-trans-vitamin D₃, and 25(OH)5,6-trans-vitamin D₃ induce a 27 \pm 3 (*P* < 0.01), 58 \pm 3 (*P* < 0.001), 64 \pm 2 (*P* < 0.001), and 67 \pm 3% (P < 0.001) inhibition, respectively. On the other hand, vitamin D₃ and 25(OH)tachysterol₃ were active in inhibiting ³H-thymidine incorporation at both 10^{-8} and 10^{-6} M in a dose-dependent manner, with no significant inhibitory effect found at 10^{-10} M. Vitamin D₃ caused a 25 \pm 8 (P < 0.01) and 55 \pm 3% (P < 0.001) inhibition at 10^{-8} and 10^{-6} M, respectively; 25(OH)tachysterol₃ induced a 33 \pm 6 (P < 0.01) and 81 \pm 2% (P < 0.001) inhibition at 10⁻⁸ and 10⁻⁶ M, respectively. 25(OH)Tachysterol was approximately 10- to 100-fold more active than tachysterol and vitamin D₃ in this respect. There was no inhibition in ³H-thymidine incorporation induced by 7-DHC at doses ranging from 10^{-10} to 10^{-6} M.

Because the biologic activity of 1α ,25(OH)₂D₃ is believed to be mediated by VDR, we next determined the binding affinity of 1α ,25(OH)₂D₃, vitamin D₃, and selected

Figure 2 Dose-dependent inhibition of ³H-thymidine incorporation into keratinocytes in the presence of vitamin D_3 and its related compounds. After keratinocytes were fed with basal medium without growth factors for 2 days, cells were incubated with fresh basal medium containing 25 ng/mL of epiderman growth factor (EGF) and 0, 10^{-10} , 10^{-8} , or 10^{-6} M of vitamin D_3 or its related compounds for 18 hr at 37°C. At the end of incubation period, ³H-thymidine incorporation was performed. The results are presented as the percent of control in the absence of test compounds. Each value is the mean ± SEM of six to eight determinations. **P* < 0.01, ***P* < 0.001 compared with respective controls. 7-DHC, 7-dehydrocholesterol; L₃, lumisterol₃; T₃, tachysterol₃; 25(OH)T₃, 25-hydroxytachysterol₃; 5,6-trans-D₃, 5,6-trans-vitamin D₃; 25(OH)5,6-trans-D₃, 25-hydroxy-5,6-trans-vitamin D₃; 1 α ,25-dihydroxyvitamin D₃.

photoisomers of vitamin D_3 and previtamin D_3 to VDR using a calf thymus cytosol preparation (*Figure 3*). The K_ds for VDR were 3.8 pM, 22 nM, 58 nM, and 560 nM for 1α ,25(OH)₂D₃, 25(OH)tachysterol₃, 25(OH)trans-vitamin D₃, and 5,6-trans-vitamin D₃, respectively. The K_ds for 7-DHC, vitamin D₃, tachysterol₃, and lumisterol₃ were all greater than 20 μ M with the following order of decreasing binding affinity: 7-DHC > vitamin D₃ > tachysterol₃.

Discussion

Our results demonstrate that vitamin D_3 itself and some of the photoisomers of vitamin D_3 and previtamin D_3 including tachysterol₃, 5,6-trans-vitamin D_3 , and their 25-hydroxylated metabolites are active in inhibiting ³H-thymidine incorporation into cultured normal human keratinocytes (*Figure 2*). The activity found for vitamin D₃ could be attributed to its metabolism to 1α ,25(OH)₂D₃ in cultured keratinocytes, which have been shown to possess both vitamin D-25-hydroxylase and 25(OH)D-1 α -hydroxylase activities.^{13–15} The recent demonstraton of vitamin D-25hydroxylase activity in keratinocytes suggests that the photoisomers of previtamin D₃, such as tachysterol₃, may be substrates for this enzyme and be hydroxylated to 25(OH)tachysterol₃, which is a pseudo-1 α ,25(OH)₂D₃ analog. Thus, 25(OH)tachysterol₃ could be recognized by the VDR in keratinocytes and cause a direct biologic response.

The antiproliferative activity of the photoisomers did not correlate with their binding affinity for VDR (*Figure 3*). For

Figure 3. Competition for ${}^{3}\text{H}-1\alpha$,25(OH)₂D₃ binding to the thymus 1α ,25(OH)₂D receptor by nonradioactive 1α ,25(OH)₂D₃, vitamin D₃, and vitamin D₃-related compounds. 1α ,25(OH)₂D₃, 1α ,25-dihydroxyvitamin D₃; 25(OH)5,6-trans-D₃, 25-hydroxy-5,6-trans-vitamin D₃; 25(OH)T₃, 25-hydroxytachysterol₃; 5,6-trans-D₃, 5,6-trans-vitamin D₃; 7-DHC, 7-dehydrocholesterol; L₃, lumisterol₃; T₃, tachysterol₃.

example, the binding affinity of 25(OH)tachysterol₃ to calf thymus VDR was at least 1,000-fold higher than that between the receptor and tachysterol₃ and yet only a 10-fold difference in their antiproliferative activity was found. Likewise, although 25(OH)5,6-trans-vitamin D₃ and 5,6trans-vitamin D₃ bound to thymus VDR with a 10-fold difference in binding affinity, both compounds were only active in inhibiting keratinocyte proliferation at 10^{-6} M. Furthermore, 7-DHC bound to thymus VDR better than tachysterol₃, yet tachysterol₃ had much higher antiproliferative activity than did 7-DHC.

There are several possible explanations for the discrepancy between the antiproliferative activity and VDR binding affinity. First, it is possible that VDR might be different among different species or different tissues. Thus, the binding affinities of various photoproducts to calf thymus may not reflect the biologic activity in human skin. At the present time, there is no evidence to support this.

Second, the effect of vitamin D_3 , 1α , $25(OH)_2D_3$, and the photoisomers of vitamin D₃ and previtamin D₃ on inhibiting keratinocyte proliferation may be mediated by a receptor other than the classic VDR.¹⁵ Recent evidence suggests that different 1α , 25(OH)₂D₃ receptor forms may be responsible for the signal transduction processes associated with genomic and nongenomic actions of 1α , 25(OH)₂D₃. For example, 1α , $25(OH)_2D_3$ rapidly increases intracellular Ca^{2+} in osteoblast-like cells (ROS 17/2.8) that lack VDR. The effect can be inhibited by its inactive epimer 1β ,25(OH)₂D₃, which does not displace 1α ,25(OH)₂D₃ from VDR.¹⁶ The rapid action of 1α ,25(OH)₂D₃ on calcium transport was also observed in perfused duodena of normal chicks.¹⁷ This non-nuclear action has been shown to be mediated by a plasma membrane receptor and not VDR.¹⁸ Norman et al.¹⁸ synthesized 1α,25(OH)₂-9,14,19,19,19pentadeuterio-pre-D₃ to investigate whether it had any biological activity. The presence of the deuterium atoms in the molecules of 1α , 25(OH)₂-9, 14, 19, 19, 19-pentadeuteriopre-D₃ suppressed its isomerization from the previtamin to the vitamin form and thus functioned primarily as an analog of the 6-s-cis form of 1α , 25(OH)₂D₃. They demonstrated that both nongenomic actions were equally responsive to 1a,25(OH)₂D₃ and 1a,25(OH)₂-9,14,19,19,19-pentadeuterio-pre-D₃, whereas 1a,25(OH)₂-9,14,19,19,19-pentadeuterio-pre-D₃ was significantly less active than 1α ,25(OH)₂D₃ in the genomic induction of osteocalcin gene.

Third, the biologic activity may be determined by the availability of receptors induced by different ligands. This possibility is supported by a recent report indicating that the antiproliferative and the differentiation effect of vitamin D analogues in skin is determined by the ability of the compounds to induce VDR transcription rather than the binding affinity for VDR only.¹⁹

Fourth, during the 18-hr incubation at 37°C, the putative 25-hydroxylase activity present in keratinocytes may metabolize 5,6-trans-vitamin D_3 and tachysterol₃ to 25(OH)5,6-trans-vitamin D_3 and 25(OH)tachysterol₃, respectively. Therefore, the activity seen with the addition of 5,6-trans-vitamin D_3 or tachysterol₃ may be due in part to their 25-hydroxylated counterparts. It is also likely that 25-hydroxylated photoisomers, which were either added to

Biologic activity of vitamin D photoisomers: Chen et al.

the incubation media or derived from the 25-hydroxylation of photoisomers during the incubation, may be further metabolized to their respective 1 α ,25-dihydroxylated compounds by the 1 α -hydroxylase present in keratinocytes,¹³ which in turn acted on VDR to exert their biological activity. This possibility is strengthened by the observation that dihydrotachysterol, which has an A-ring orientation similar to that of tachysterol and 5,6-trans-vitamin D₃, can be hydroxylated at the C-1 position to form 1 α ,25-dihydroxy-dihydrotachysterol and 1 β ,25-dihydroxy-dihydrotachysterol in vivo.²⁰

Thus, the present study suggests that sunlight is not only the major provider of vitamin D_3 for humans for maintaining calcium and phosphorus homeostasis, but also provides vitamin D_3 and photoproducts that may act directly to regulate epidermal proliferation. The amounts of vitamin D_3 and tachysterol₃ that can be made in the epidermal cell during solar irradiation are much higher than the picogram quantities of 1α ,25(OH)₂D₃ that are exposed to the epidermis from the circulation. Thus, the results suggest the possibility that vitamin D₃ and some of the photoproducts of previtamin D₃, such as tachysterol₃, can regulate epidermal proliferation and differentiation under physiologic conditions.

UVB phototherapy has been used to treat psoriasis since 1925 when Goeckerman²¹ observed the benefit of combined treatment using tar and UV light. New developments in phototechnology during the past decade have made UVB phototherapy alone emerge as a reasonably effective and fairly practical treatment for psoriasis.²² The mechanisms of the therapeutic effect of UV radiation on psoriasis are not well understood.²² Most hypotheses have focused on a direct effect of UV radiation on inhibiting DNA synthesis in the hyperproliferating cells. Alternatively, it has long been suspected that during UV radiation therapy some photoproducts that are produced were having therapeutic benefits.⁷ Our present results strongly suggest that the formation of vitamin D₃ and previtamin D₃ photoisomers could be a major factor in the therapeutic benefit that UVB phototherapy provides for psoriasis.

Acknowledgments

The work was supported in part by grants RO1-AR36963, RO1-DK43690, and MO1RR00533 from the National Institutes of Health and from a generous gift from California Tan Inc. and the Heliotherapy, Light and Skin Research Center. The authors would like to thank David Jackson for preparation of the graphics.

References

- Holick, M.F. (1994). McCollum Award Lecture: Vitamin D new horizons for the 21st century. Am. J. Clin. Nutr. 60, 619–630
- 2 Tian, X.Q., Chen, T.C., Matsuoka, L.Y., Wortsman, J., and Holick, M.F. (1993). Kinetic and thermodynamic studies of the conversion of previtamin D₃ to vitamin D₃ in human skin. *J. Biol. Chem.* **268**, 14888–14892
- 3 Hosomi, J., Hosoi, J., Abe, E., Suda, T., and Kuroki, T. (1983). Regulation of terminal differentiation of cultured mouse epidermal cells by 1,25-dihydroxyvitamin D₃. *Endocrinology* **113**, 1950–1957
- 4 Smith, E.L., Walworth, N.C., and Holick, M.F. (1986). Effect of

1,25-dihydroxyvitamin D_3 on the morphologic and biochemical differentiation of cultured human epidermal keratinocytes grown in serum-free conditions. *J. Invest. Dermatol.* **86**, 709–714

- 5 Pillai, S. and Bikle, D.D. (1991). Role of intracellular-free calcium in the cornified envelope formation of keratinocytes: Differences in the mode of action of extracellular calcium and 1,25 dihydroxyvitamin D₃. J. Cell. Physiol. **146**, 94–100
- 6 Holick, M.F., MacLaughlin, J.A., and Doppelt, S.H. (1981). Regulation of cutaneous previtamin D₃ photosynthesis in human: Skin pigment is not an essential regulator. *Science* 211, 590–593
- 7 Webb, A.R., DeCosta, B.R., and Holick, M.F. (1989). Sunlight regulates the cutaneous production of vitamin D₃ by causing its photodegradation. J. Clin. Endocrinol. Metab. 68, 882–887
- 8 Holick, M.F., Garabedian, M., and DeLuca, H.F. (1972). 5,6-Trans isomers of cholecalciferol and 25-hydroxycholecalciferol. Substitutes for 1,25-dihydroxycholecalciferol in anephric animals. *Biochemistry* 11, 2715–2719
- 9 Rheinwald, J.G. and Green, H. (1975). Serial cultivation of strains of human epidermal keratinocytes: The formation of keratinizing colonies from single cells. *Cell* 6, 331–344
- 10 Chen, T.C., Persons, K., Liu, W.W., Chen, M.L., and Holick, M.F. (1995). The antiproliferative and differentiation activities of 1,25dihydroxyvitamin D₃ are potentiated by epidermal growth factor and attenuated by insulin in cultured human keratinocytes. *J. Invest. Dermatol.* **104**, 113–117
- 11 Reinhardt, T.A., Horst, R.L., Orf, J.W., and Hollis, B.W. (1984). A microassay for 1,25-dihydroxyvitamin D not requiring high performance liquid chromatography: Application to clinical studies. *J. Clin. Endocrinol. Metab.* 58, 91–98
- 12 Chen, T.C., Turner, A.K., and Holick, M.F. (1990). A method for the determination of the circulating concentration of 1,25-dihydroxyvitamin D. J. Nutr. Biochem. 1, 320–327
- 13 Bikle, D.D., Nemanic, M.K., Whitney, J.O., and Elias, P.W. (1986). Neonatal human foreskin keratinocytes produce 1,25-dihydroxyvitamin D₃. *Biochemistry* 25, 1545–1548.
- 14 Rudolph, T., Lehmann, B., Pietzsch, J., Kampf, A., Wozel, G., and Meurer M. (1997). Normal human keratinocytes in organotypic culture metabolize vitamin D₃ to 1α,25-dihydroxyvitamin D₃. Vitamin D: Chemistry, biology and clinical applications of the steroid hormone. (A.W. Norman, R. Bouillon, and M. Thomasset, eds.) *Proceedings of the 10th Workshop on Vitamin D*. (Strasbourg,

France, May 24–29, 1997), pp. 581–582, University of California, Riverside, CA USA

- 15 Lehmann, B., Pietzsch, J., Kampf, A., Wozel, G., and Meurer, M. (1997). Human HaCat keratinocytes metabolize 1α-hydroxyvitamin D₃ and vitamin D₃ to 1α,25-dihydroxyvitamin D₃. Vitamin D: Chemistry, biology and clinical applications of the steroid hormone. (A.W. Norman, R. Bouillon, and M. Thomasset, eds.) *Proceedings of the 10th Workshop on Vitamin D.* (Strasbourg, France, May 24–29, 1997), pp. 583–584, University of California, Riverside, CA USA
- 16 Baran, D.T., Sorensen, A.M., Shalhoub, V., Owen, T., Stein, G., and Lian, J. (1992). The rapid nongenomic actions of 1,25-dihydroxyvitamin D_3 modulate the hormone-induced increments in osteocalcin gene transcription in osteoblast-like cells. *J. Cell. Biochem.* **50**, 124–129
- 17 Nemere, I., Yoshimoto, Y., and Norman, A.W. (1981). Calcium transport in perfused duodena from normal chicks: Enhancement within fourteen minutes of exposure to 1,25-dihydroxyvitamin D₃. *Endocrinology* **115**, 1476–1483
- 18 Norman, A.W., Okamura, W.H., Farach-Carson, M.C., Allewaert, K., Branisteanu, D., Nemere, I., Muralidharan, K.R., and Bouillon, R. (1993). Structure-function studies of 1,25-dihydroxyvitamin D₃ and the vitamin D endocrine system: 1,25-dihydroxy-pentadeuterio-previtamin D₃ (as a 6-s-cis analog) stimulates nongenomic but not genomic biological responses. *J. Biol. Chem.* **268**, 13811–13819
- 19 Hansen, C.M., Mathiasen, I.S., and Binderup, L. (1995). The anti-proliferative and the differentiation inducing effect of vitamin D analogues is not determined by the binding affinity for the vitamin D receptor alone. Clinical Oriented Symposium on Vitamin D: Actions and Application in Dermatology, European Society of Dermatological Research, April 27–29, 1995, Copenhagen, Denmark
- 20 Qaw, F., Calverley, M.J., Schroeder, N.J., Trafford, D.J.H., Makin, H.L.J., and Jones, G. (1993). In vivo metabolism of the vitamin D analog, dihydrotachysterol: Evidence for formation of 1α,25-and 1β,25-dihydroxy-dihydrotachysterol metabolites and studies of their biological activity. J. Biol. Chem. 268, 282–292
- 21 Goeckerman, W.H. (1925) The treatment of psoriasis. *Northwest Med.* **24**, 229
- 22 Gonzalez, E. and Parrish, J.A. (1991). Ultraviolet phototherapy. In *Psoriasis*, 2nd ed. (J.J. Roenigk, Jr. and H.I. Maibach, eds.), pp 519– 532, Marcel Dekker, Inc., New York, NY, USA